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Abstract
N
- \T//‘:‘ g "1\[
“We- prove‘/\a classical limit theorem on characteristic functions
by using duality between a pair of optimization problems, one of )
which is an infinite dimensional minimization involving the relative
entropy functional.
/
KEY WORDS: Characteristic Functions, Optimization in infinite
dimensional spaces, Duality, Relative Entropy.
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Introduction

Modern optimization theory has been employed successfully in many
diverse fields such as Economics, Physics, Statistics, Biology and
Engineering. This paper is a small step toward demonstrating the use
of optimization theory as proof mechanism in Probability.

The result from Probability Theory in question here is a limit
theorem on characteristic functions. Let X be a random variable with
distribution Px . support [xL,xR] énd characteristic function
y(t) = Eeitx
Then

xe = lim %-log Y (=-iy)
y-”
X = -lim<% log y(iy) .
YM

The result is given in Lucas' classical book "Characteristic Functions"”

[3]); first a weaker result, concerning only analytic characteristic functions,

is proved in Chapter 7. The full statement is given in Chapter 11, as part
of Theorem 11.1.2. It is derived from the result in Ch. 7 via a chain of

lemmas on boundary characteristic functions.

Here we prove the above limit theorem by using duality relations
between two extremum problems. One of these problems is an infinite-
dimensional convex program involving the minimization of the relative

entropy functional, which is of dundamental importance in Statistical

Information Theory, Thermodynamics and Communication Theory.

The plan of the paper is as follows: Section 1 gives a formal
statement of the limit theorem (Theorem A). Section 2 gives the duality
theorem (Theorem B), which is in fact an adaptation of a result in the

authors' paper [l]. In Section 3 we prove Theorem A via Theorem B.
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A limit theorem on characteristic functions

Let X be a random variable, and Fx(x) its distribution function.

Let Y(t) denote the characteristic function of Fx, i.e.
o«

pit) = J eitx de(x) .

The ieft extremity of Fx is the number X with the property

Ve > 0 Fx(xL—e) o, Fx(xL+e) >0 .

and the right extremity of F is the number xR with the_property

Ye > 0 : Fx(xR-e) <1 Fx(xR) =1

The interval [xL,xR] is the support of Fx. Cleaqu

XR
v = 1 ™ ar .
X

L

Fx is bounded to the left if xL >=o and bounded to the right if

xR < ®»,
Theorem A. If Fx be bounded to the right, then its right extremity
is given by
(1) x, = lim & log ¥ (-iy)
R Y

y-)-ﬁ
If F 4is bounded from the left, then its left extremity is given by

(2) = -lim % log ¥ (iy) .

y+®

*L

A duality theorem on relative entropies

let D be the class of generalized densities f = dE (Radon~-N1ikogdym

dt
derivatives) of distribution functions F, on a given probability
) dF
, X
space, with support [xL,xR] . In particular Px.E D and fx =3
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L. is the corresponding density. The relative entropy (divergence,

Kullback-Leibler distance) betweeh FED and Px is given by the

quantity

'-..'f XR £(t)
h I (f;fx) = [ f(t) loglm)]dt .
2 Xy X

T It is well known that I(';fx) is a nonnegative convex functional
and is equal to zero if and only if f = fx (a.e, with respect to dt)

By see [2]).

< A special case of a problem studied in [1,Ch.3] is the infinite-dimensional

convex program

XR
(E) inf{I(f,£ ) : / g(t)f(t)dt > a}
£€D x Xy,

where g(t) is a given summable function. It was shown in (1] that a dual
problem is given by

XR
(H) sup{ay-log [ eyg(t) £ _(t)at} ,
y20 x, x

Moreover, fxrom Th. 1 in [1] the following duality relations hold

between (E) and (H).

’ Theoxrem B. If (E) 1is feasible then inf(E) 1is attained, sup(H) is
finite and |
‘ min(E) = sup(H) .

S

w2

3. Proof of Theorem A via Theorem B

Fhdd

17

First note that the trivial inequality

Vy >0 : ge'* < o¥%g
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_::f implies
{
> lim & log E &¥* 2 %
- y->e
b
:'. ioe.
& .
5.; (3) lim ; log y(-iy) < Xo o
8 j yveo
B
A Consider now the problem
.4
\: . xR
i (E) inf{I(£;£): S t£(t)dae > x_ - €}
b, £ED ' x - R
l.' L
% v
N for some fixed € > 0 . This is a special case of problem (E) with
e .
> g(t) =t , a=x - ¢ . The dual is
x
R
. sup{y(xa-e) - log J eyt fx,(t)dt}
- y>0 x ) X
X - L K
J L]
4
)
) i.e.
N () sup{y(x_-€) - log y(-iy)} .
> € R o
j y20 4
3 g
2 | :
Bt Problem (Be) is clearly feasible for every € > 0 , and we infer from ‘
. Theorem B: :
- ;
", ] 3
o ® > gap(D ) > lim{y(x_-€¢) = log y(-iy)} = .
€ - yoo R
7 &y
4 1 i
. = lim ylx_-€ - T log Y (-iy)] -4
Y-DO
S
- Now, for the limit to be finite, it is necessary that: -
o . .
1 : 1 f
X (4) XR-G:: lim-;loq Y (~iy) Ye>0. .
Y-OO

Combining (3) and (4) we obtain equation (l).
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To prove equation (2) we note that the inequality

(5) -lim %-log Ypiy) 2 x
yoo

L

is trivial, while the inequality

(6) -lin L log ¥(iy) Sx +€ Ve>0
yoe ¥

follows by applying Theorem B (in the above manner) to'the dual pair:

X -
inf(I(E,£) + /° tE(t)at 3 x

*L

p " €}

sup{‘Y(xL+€) - log y(iy) } .
y20
Now, (5) and (6) indeed imply (2) , and the proof of Theorem A is

thereby completed.
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